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O B L I Q U E  I N C I D E N C E  OF S U R F A C E  WAVES 

ON A N  E L A S T I C  P L A T E  

I . V .  S turova  UDC 532.59:539.3:534.1 

Oblique incidence of small-amplitude waves on an elastic plate floating on a free liquid surface is 
studied. The reflection and transmission factors of the waves and the vertical displacements and 
strains of the plate are determined. It is shown that all these characteristics depend greatly on 
the incidence angle and frequency of the wave and the width of the plate. Approximate solutions 
for the reflection and transmission factors are obtained. 

The behavior of a thin elastic plate floating on a disturbed water surface has been actively investigated 
in connection with studies of flexural-gravity waves in a liquid with an ice floe (review [1, 2]). In addition, 
interest in this problem has increased recently because of the design of buoyant island and platforms for 
various uses [3]. Usually, these man-made structures have a rectangular shape with a large (approximately 
10 : 1) length-to-width ratio. It can be assumed that away from the corner points, the behavior of the plate 
is approximately described by the solution of the problem of surface waves incident on an elastic plate of 
infinite length and constant width. Let the liquid be ideal and incompressible, have constant depth, and be 
infinite along the horizontal direction, and the liquid flow be potential. The external disturbance is considered 
planar and regular, and the amplitudes of the surface waves and the flexural vibrations of the elastic plate 
are considered small. The particular cases of the problem of oblique incidence of waves on the edge of a 
semi-infinite plate and normal incidence on a plate of finite width are examined, respectively, by Fox and 
Squire [4] and Meylan and Squire [5]. 

Let an elastic, infinitely long plate of width L and thickness h float on the free surface of a liquid layer 
of depth H. The settling of the plate is assumed to be negligible. From the region of the free surface of the 
basin, a progressive wave with frequency w is obliquely incident on the left edge of the plate. The coordinate 
system is chosen so that the coordinate origin is located at the bot tom of the basin under the left edge of the 
plate, the horizontal x axis is perpendicular to the edges of the plate, the y axis is parallel to them, and the 
z axis is directed vertically upward. 

The incident wave propagates at angle 0 to the x axis and is defined by the velocity potential 

t) =  0(x, z)  e •  [i( t - 

where q~0 = lag cosh (koz)l(w cosh (koH)) exp ( - l a x ) ,  (a, ~) = k0(cos 0, sin 0), x = (x, y, z), a is the wave 
amplitude, g is the acceleration due to gravity, and the wavenumber k0 is a positive real root of the equation 

w 2 = gko tanh (koH). (1) 

Here and below, in all the expressions containing the factor exp (iwt), only the real part has a physical meaning. 
Steady-state waves are considered, and because of the infinite length of the elastic plate, the velocity 

potential of the disturbed liquid flow is sought in the form 

~(z ,  t) = ~(x, z) exp [i(wt - ~y)]. (2) 
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To determine T(x, z), it is necessary to solve the equation 

02~ 02~ 
0 7  + O z ---7 - ~ 2 r = 0 

with the boundary conditions 

0~ ~2 
Oz g 

[D (0~2  - fl2)2 + 1 -/.tw2] O~Oz 

0~ = 0  
Oz 

(x < 0, x > L, 

r 2 
T = O  

g 

( z  = 0) ,  

(3) 

z = H); (4) 

( 0 < x < L ,  z = H ) ;  

(6) 

where D = Eh3/(12pg(1 - v2)) and # = plh/(pg). Here E, pl, and v is the modulus of normal elasticity, 
density, and Poisson's ratio of the plate and p is the water density. It is assumed that the plate contacts water 
at all points and at all times. At the edges of the plate, the free-edge conditions are satisfied, which imply 
that  the flexural moment  and the cutting force are equal to zero: 

- - ~  - = 0  ( x = 0 + ,  x L - ,  z Oz \ Oz 2 - Oz Oz [b- f iz  2 = = (7)  

To solve problem (3)-(7), we use the conjugation method of [6], in which the region S occupied by the liquid 
is divided into three parts: $1 (-cx~ < x < 0), $2 (0 < z < L), and $3 (L < x < ec); in each of them ~(x, z) 
is denoted by ~j(x,  z) (j = ~,3). Further, we convert to dimensionless variables by choosing the basin depth 

H as the length scale and ~ as the t ime scale. 
The functions Tj are sought in the form of expansion in the eigenfunctions of the corresponding 

boundary-value problems: 
OO 

~1 = [E0 exp ( - l a x )  + Ao exp (iax)]Yo(ko, z) + ~ An exp (anx)YI (kn, z); (8) 
n = l  

4 

~;2 = [B0 exp(-iqox) + Co exp (iqox)]Yo(ro, z) + ~ Gm exp (smx) cos (pmz) 
m=l 

"+ ~_, [Bn exp (-qnX) + On exp (qnX)]Yl(rn, Z); (9) 
n----1 

oo 

~3 = F0 exp (-iax)Yo(ko, z) + ~ Fn exp (-anx)Yi(kn,  z). (10) 
n = l  

Here Eo = i a ~ o ( k o ) / ( w  cosh k0), kn (n = 1, 2 , . . . )  are real roots of the equation 

w 2 = - kn  tan kn, (11) 

an = ~ + f12, ro is a real root of the equation 

w2 = (1 + ~r4)r t anhr  
l + T r t a n h r  ' (12) 

qo = ~ 0  2 - f12, (13) 

= D/H 4, and 7 = #g/H.  Equation (12) has an infinite number of purely imaginary roots :l:irn (n = 1, 2, . . . ) ,  

qn = ~ + f12 and four complex roots :ka -t- iA (or > 0 and ~ > 0). The values of pm are equal to :i:A ~: in; 

s m =  ~/p~ + f12. We enumerate the values of sm as follows: Sl,2 = c :kid, s3,4 = - c  4- id (c > 0 and d > 0). 
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The functions Y0 and Yn (n = 1, 2 , . . . )  have the form 

1 
f 1 sinh (2~) Y~(~, z) - cosh (~z) h0(~) = cosh 2 (~z) dz = ~ + 4~ ' 

o 

1 
cos (~z) / 1 sin (2() 

Y1 (~, z) - ~ f ~ ,  A1 (~) = 0 cos 2 (~z) dz = -~ + 4---~- 

The properties of the eigenvalues and eigenfunctions are extensively studied in [4, 7]; we indicate their 
basic properties briefly. In the regions S1 and $3, the eigenfunctions are orthogonal and represent a complete 
system for the potential satisfying Eq. (3) and boundary conditions (4) and (6). In the dimensionless variables 
according to Eq. (1), k0 ~ w as w ~ 0 and k0 ~ w 2 as w --+ oo. The roots kn of Eq. (11) are such that 
(n - 1/2)a" < kn < nzr and kn --* nzr for large n. In the region $2, the eigenfunctions are nonorthogonal, but 
they also represent a complete system. The real root of Eq. (12) is r0 ~ w as w ~ 0, and ro ~ w l / 2 ( 7 / 6 )  1/4 

as w --~ c~. The roots rn obey the inequalities (n - 1/2)a" < rn < (n + 1/2)a" and rn --+ mr for large n. One 
of the complex roots of Eq. (12) for w = 0 is equal to ~ + iA = (1 + i )2-1/2~ -1/4. The modes related to kn 

and rn are called edge modes and the modes determined by the complex roots Pm (m = 1,4) and due to the 
flexural rigidity of ice are called growing or damped progressive waves, depending on the sign of Re(sin). In 
the numbering introduced above, the modes determined by Sl and s2 are growing and the modes determined 
by s3 and s4 are damped. The mode related to r0 is a progressive wave for real values of q0 in (13). However, 
for r0 < fl, the value of q0 becomes imaginary, and this corresponds to the boundary mode. The value of the 
angle 0 = 90, where 

Oo = arcsin(ro/ko), (14) 

is called critical since complete reflection of incident progressive waves from the plate takes place. A similar 
phenomenon is also observed for oblique incidence of surface waves on a rectangular base trench [8]. 

By virtue of the liquid-flow continuity in the region S, matching conditions for the pressure and 
horizontal velocity are imposed on the boundaries of the regions Sj, and, hence, 

= ( x = 0 ,  0 ~ < z ~ H ) ;  (15) ~1 = ~v2, Ox Ox 

0~2 &?3 
- ( x = L ,  O<~z<~H).  (16) r = r Ox Ox 

Using the reduction method,  we replace the infinite series in (8)-(10) by finite sums with N terms. The 
matching conditions (15) and (16) are satisfied in the integral sense, i.e., they are successively multiplied 
by the functions Yo(ko ,z ) ,  Yo(ro, z) ,  Y l (kn ,  z) ,  and Yl(rn, z) (n = 1, 2 , . . . )  and integrated in the interval 
0 ~< z ~< H. The constants A0, An, F0, and Fn are conveniently expressed in terms of the remaining unknown 
complex constants, and as a result, the problem is reduced to solving 2N + 6 linear equations; which is 
implemented numerically. 

In studies of wave diffraction on a plate, an approximation is frequently used that ignores edge waves, 
i.e., the finite sums in the representations (8)-(10). This problem is much easier to solve since it is reduced 
to a system of only six linear equations. 

In the limit L ---+ cr the problem considered corresponds to oblique incidence of surface waves on the 
edge of a semi-infinite plate. In this case, the region S is divided into two parts: $1 (x < 0) and $2 (x > 0). 
The representation for ~1 still has the form (8), and for ~v2 in (9), terms with the coefficients Co, G~, G2, and 
C,~ should be omitted. On the boundary between the regions $1 and $2, the matching conditions (15) must 
be satisfied. This problem is also solved by the method of integral gluing, and the problem is reduced to a 
system of 3 + N linear equations. To derive an approximate solution ignoring edge waves, one should solve a 
system of three linear equations. 

Calculating all the unknown constants in (8)-(10), one can determine the wave flow of the liquid and 
the strain of the plate. For a plate of finite width, the reflection factor R and the transmission factor T, which 
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characterize, respectively, the surface progressive wave reflected from the plate and the wave transmitted 
through it, are 

R = Ao/Eo ,  T = Fo/Eo (17) 

and obey the energy relation 

Inl 2 + IT] 2 = 1. (18) 

For a semi-infinite plate, we introduce the notation R1 for the reflection factor, which is determined similarly 
to R in (17), and T1 for.the transmission of an undamped progressive flexural-gravity wave in the plate: 

r0Bosinhr0 Ao(ko) 
T 1 -  

koEos inhko  A0(r0)" 

Fox and Squire [4] give the energy relation 

[RI[ 2 q- QITll 2 = 1, (19) 

where 

Re (qo)k 2 sinh (2ko)[2r0(6ro 4 + 1 - 7w 2) + sinh (2v0)(55r 4 + 1 - 3,w2)] 

Q = Re (a)r02 sinh (2r0)[2k0 + sinh (2k0)] 

Using a method similar to the one for solving optical problems, Meylan and Squire [9] derive formulas 
relating the reflection and transmission factors for plates of finite and infinite width for normally incident 
waves in the approximation of single dispersion. Extending these formulas to the case of obliquely incident 
waves, we obtain 

R~T21(1 - IRll 2) ITll2(1 - rai l  2) exp [i(a + q0)L] 
n = n l  - (T{) 2 exp (2iqoL) - T12(RI) 2' T = (T{) 2 exp (2iqoL) - T2(RI) 2 ' (20) 

where the asterisk denotes complex conjugation. As pointed out in [9], this approximation is valid only when 
the width of the plate is great compared to the length of a flexural-gravity wave lr = 2~r/ro. As for a rigid 
plate [6], there is a discrete spectrum of frequencies for which R = 0 (the so-called spectral windows). An 
increase in the plate length at fixed remaining parameters leads to complete transmission of an incident wave 
with interval A L  = lr/qo for a real value of q0. 

Similarly to (2), the vertical displacements of the plate 7(x,  y, t) can be written as 

Using the relation 

we obtain 

,7(x, y,  t) = Re exp [ i @ t  - 

07 - -  0r z=H' Ot Oz 

i 0~2(z, z) z=H" z~ta(~) = .--- 

The strain tensor ~ is the matrix 

1 027 027 
h Oz 2 Oz Oy 

e = - ~  027 027 , 

Ox Oy Oy 2 

for which the eigenvalues corresponding to the principal strains can be determined at each time. The maximum 
strain em is calculated as the greatest in absolute value of the two principal strains with variation in wt from 
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0 to 2~r. Along with the max imum strain, the normal strain en was calculated to be equal to ~ ~ x  2 . At a 

normally incident wave, en = era. 
The numerical calculations are performed for parameters of an ice floe tha t  are most frequently used in 

the l i terature cited (below, we revert to dimensional variables): E = 6- 109 Pa, H = 100 m, p = 1025 kg /m 3, 
h = a = 1 m, pl = 922.5 k g / m  3, and u = 0.3. For these values, 5 = 5.47.10 -4 and 7 = 9 .10  -3. 

Figure 1 shows the kinematic characteristics of progressive waves: curve 1 shows the behavior of the 
wavenumber koH for a gravity wave, curve 2 shows the behavior of the wavenumber roll for a flexural-gravity 
wave, and curves 3 and 4 are the values of ~rH and AH, respectively. For a specified value of 5, we have 
crH = AH ~ 4.62 for w = 0. The dashed curve represents the dependence w = k 0 v ~  for long waves, and the 
dot-and-dashed curve is the high-frequency approximation w = x / ' ~ .  It is obvious that  the behavior of k0 is 
adequately described by these two approximations. The high-frequency behavior of r0 is not shown because, 
by virtue of the smallness of the values of 5 and 7, it takes place only for w >> 1. 

Figure 2a and b shows the reflection factors at 0 = 0 and 0 = 30 ~ respectively (for w k / t - ~  < 1 in 
these cases, [R I and [RI[ axe smaller than 0.01). Curves 1, 2, and 7 correspond to a plate of width L/H = 2, 
curves 3, 4, and 8 correspond to a plate of width L/H = 5, and curves 5, and 6 correspond to a semi-infinite 
plate (L ~ oo). Curves 1, 3, and 5 represent a numerical solution that takes into account N = 20 boundary 
modes, and curves 2, 4, and 6 represent an approximate solution without edge modes. With allowance for 
the edge modes, the error of satisfaction of the energy relations (18) and (19) for plates of finite and infinite 
width, respectively, do not exceed 1%. It is obvious that the approximate solution that ignores the edge 
waves adequately describes the  behavior of the reflection factor, and also, according to (18) and (19), the 
transmission factor for rather  long waves. The approximate values of (20) shown by curves 7 and 8 are in 
good agreement with the complete solution (curves 1, and 3). An interesting feature of obliquely incident 
waves is that  the oscillation of the  reflection factor is enhanced as the frequency corresponding to the critical 
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angle is approached [according to (14) 00 = 30 ~ as w k / ~  ,~ 3.67]. 
The strain characteristics of the plate are shown in Figs. 3 and 4 for normally and obliquely (0 = 30 ~ 

incident waves, respectively, at w ~ - g  = 2.4 (incident-wave length lk = 27r/ko ~ 109 m and wave period 
r = 27r/w ~ 8.4 see). Figure 3a and b and Fig. 4a and b show the amplitudes of vertical displacements I(l/a 
and normal strains e,= along the plate. Curves 1-3 correspond to L/H = 2, 5, and oo. For normal incidence of 
waves on a plate of finite width, the amplitudes of vertical displacements and strains exhibit nonmonotonic 
behavior along the plate, and maximum vertical displacements are reached at the ends of the plate. Similar 
behavior of the indicated characteristics is noted in [3]. Calculations for the parameters indicated in [3] showed 
satisfactory agreement between the theoretical and experimental results. The values of e,= at the plate ends 
are equal to zero by virtue of boundary conditions (7). In addition, Fig. 4c shows the distribution of the 
maximum strains ~,~ for oblique incidence. 

An interesting feature of the oblique incidence of waves on a plate of finite width in the neighborhood 
of the critical angle is that  maximum vertical displacements can occur in its middle part and not at the plate 
ends. 

For complete reflection of an incident wave, elastic deformations of the plate are observed only at the 
leading edge, and their behavior does not depend on the width of the plate. A semi-infinite plate is examined 
in detail in [4]. 

The accuracy of the calculations described here was checked by increasing the number of edge modes 
successively. For the purposes of the present work, it is sufl:icient to set N = 20. 

The studies performed can also be used to determine the spectral characteristics of hydroelastic 
deformations of a plate with specification of a concrete spectrum of wind waves similarly to [5, 10]. 

This work is supported by the Russian Foundation for Fundamental Research (Grant No. 97-01-00897) 
and integration project of Siberian Division of the Russian Academy of Sciences. No 43. 
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